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Problem 1

Consider the system defined by the following state equations:

ẋ1 = x1 + x2 � (u1 + u2) x1(0) = 1

ẋ2 = x2
1 � (x2 � 1)

2
+ x1x2 � u2

1 � u2 x2(0) = 1

y1 = x1(1 + x2) + u1

y2 = x1 + x2 � u2

Linearize the model around a stationary point corresponding to ū1 = ū2 = 1 and for

positive values of x̄1 and x̄2. Obtain a state-space representation for the linearized system.

Problem 2

Consider the mechanical system shown in Figure 1. The system is driven by an external

force F applied to the mass in a direction perpendicular to the pendulum arm. The output

of the system is the angular position ✓ and the moment of inertia is given by J = ml2. The
spring is in relaxed state when ✓ = 0.
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Figure 1: Pendulum system

a) Obtain a state-space representation for the system.

b) Linearize the model for small deformations around the vertical equilibrium position.

Problem 3

Figure 2 shows a magnetic ball that is levitated in air using an electromagnetic coil. The

input and output of the system are the current i passing through the coil and the position

x of the ball, respectively.
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• Non-conservative virtual work
• Forces that cannot be derived from a potential function V
• Externally applied forces, 𝑄! , fall into this category

𝑑
𝑑𝑡

𝜕𝐿
𝜕𝑞̇!

−
𝜕𝐿
𝜕𝑞!

= 𝑄!

• As with all the generalized quantities, pay attention to the interpretation
• If the generalized coordinate represents an angle, the generalized force 

will be a torque

𝑄! =*
"

𝐹⃗" -
𝜕𝑟"
𝜕𝑞!



Lecture Overview

• Laplace Transform 

• Transfer function

Next Week:

• Inverse Laplace Transform
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Laplace Transform

4

• For a given function f	(t) with f	(t)=	0 for t <	0,	Laplace transform of this 
function is defined as follows:

𝐹 𝑠 = ℒ 𝑓 𝑡 = *
"

#

𝑓 𝑡 𝑒$%&𝑑𝑡

s is a complex variable

𝑠 = 𝑎 + 𝑗𝑏

• From differential equations to algebraic equations



Laplace Transform of Common Functions
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𝐹 𝑠 = ℒ 𝐴𝑒$'& = *
"

#

𝐴𝑒$'&𝑒$%&𝑑𝑡 = 𝐴*
"

#

𝑒$(')%)&𝑑𝑡 =
𝐴

𝑠 + 𝛼

• Exponential function

𝑓 𝑡 = 3 0, 𝑡 < 0
𝐴𝑒$'&, 𝑡 ≥ 0

• We assumed that the real part of s is greater than -α (the abscissa of 
convergence), so that the integral converges.



Laplace Transform of Common Functions
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• Unit Step function

• Ramp function



Integration by Parts
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Laplace Transform of Common Functions
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• Sinusoidal function

cos 𝜔𝑡 =
𝑒+,& + 𝑒$+,&

2
sin 𝜔𝑡 =

𝑒+,& − 𝑒$+,&

2𝑗



Laplace Transform of Common Functions
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• Impulse function



Laplace Transform of the Derivative of a Function
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• Integration by parts



Laplace Transform of the Derivative of a Function
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• Higher order derivatives



Laplace Transform of the Integral of a Function
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• Integration by parts



Properties of Laplace Transform

13

• The Linearity Property



Properties of Laplace Transform
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• Time shift

• Shift along the s-axis

substitute



Properties of Laplace Transform
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• Multiplication by t

𝐹 𝑠 = ℒ 𝑡𝑥(𝑡) = −
𝑑𝑋(𝑠)
𝑑𝑠

ℒ
𝑓(𝑡)
𝑡

= *
%

#

𝑓 𝑢 𝑑𝑢 ℒ
𝑓(𝑡)
𝑡

→ 0 𝑎𝑠 𝑠 → ∞assuming that

• Multiplication by 1/t



Properties of Laplace Transform
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• Final value theorem

• Conditions: The function f	(t)	and df/dt must possess Laplace 
transforms and f	(t) must approach a constant value as t→	∞

ℒ 𝑓′(𝑡) = *
"

#

𝑒$%&𝑓- 𝑡 𝑑𝑡 = 𝑠𝐹 𝑠 − 𝑓(0)

lim
%→"

*
"

#

𝑒$%&𝑓- 𝑡 𝑑𝑡 = lim
%→"

lim
/→#

*
"

/

𝑒$%&𝑓- 𝑡 𝑑𝑡 = lim
%→"

lim
/→#

𝑒$%/𝑓 𝑇 − 𝑓(0)

= lim
/→#

𝑓 𝑇 − 𝑓 0 = lim
&→#

𝑓 𝑡 − 𝑓 0

lim
%→"

𝑠𝐹 𝑠 − 𝑓 0 = lim
&→#

𝑓 𝑡 − 𝑓 0

(1)

(2)

From (1) & (2)



Properties of Laplace Transform
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• Initial value theorem

lim
&→#

𝑒$0& 𝑓(𝑡) = 0f	(t) is of exponential order



Laplace Transform Table
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𝜀(𝑡)𝑡1𝑒$'&

𝜀(𝑡) K1 𝑠

1

K1 𝑠 + 𝛼

𝜀 𝑡 𝑡1

𝜀(𝑡)𝑒$'&

𝛿(𝑡)

𝜀 𝑡 cos(𝜔𝑡)

𝜀 𝑡 sin(𝜔𝑡)

𝜀 𝑡 𝑒$'&cos(𝜔𝑡)

𝜀 𝑡 𝑒$'&sin(𝜔𝑡)

K𝑛! 𝑠1)2

K𝑛! (𝑠 + 𝛼)1)2

K𝑠 𝑠3 + 𝜔3

K𝜔 𝑠3 + 𝜔3

K𝜔 (𝑠 + 𝛼)3+𝜔3

P(𝑠 + 𝛼)
(𝑠 + 𝛼)3+𝜔3

𝒙(𝒕) 𝑿(𝒔)



Laplace Transform Table
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𝒙(𝒕) 𝑿(𝒔)

𝑑1

𝑑𝑡1
𝑓(𝑡)

𝑒$'&𝑓(𝑡)

𝜀 𝑡 − 𝜏 𝑓(𝑡 − 𝜏)

𝑓 𝑡 ∗ 𝑔(𝑡)

*
"

&

𝑓 𝜏 𝑑𝜏

𝑡1𝑓(𝑡)

𝐹(𝑠 + 𝛼)

𝑒$%4𝐹(𝑠)

𝐹 𝑠 𝐺(𝑠)

𝐹 𝑠
𝑠

(−1)1
𝑑1

𝑑𝑠1 𝐹(𝑠)

𝑠1𝐹 𝑠 −Y
562

1

𝑠1$5𝑔5$2 𝑔!"# = #
𝑑!"#𝑓
𝑑𝑡!"# 𝑡 = 0



Example 1: Decomposition
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• Direct Integration

• Combination of known signals



Example 2: Exponentials and Final Value
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Example 3: Time shift
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𝑆 𝑡 = 𝜀 𝑡 − 3 sin(𝑡)

sin 𝑡 = sin 𝑡 − 3 + 3 = sin 𝑡 − 3 cos 3 + cos 𝑡 − 3 sin(3)

ℒ 𝑆(𝑡) = ℒ 𝜀 𝑡 − 3 sin(𝑡 − 3) cos 3 + ℒ 𝜀 𝑡 − 3 cos(𝑡 − 3) sin 3

ℒ 𝑆(𝑡) = 𝑒$7% cos 3
1

𝑠3 + 1
+ 𝑒$7% sin 3

𝑠
𝑠3 + 1

=
(cos 3 + s sin(3))𝑒$7%

𝑠3 + 1



Example 4: Time Derivative
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𝑦 𝑡 = sin(𝜔𝑡)𝜀(𝑡)

𝑢 𝑡 = cos(𝜔𝑡)𝜀(𝑡) 𝑈 𝑠 =
𝑠

𝑠3 + 𝜔3

𝑌 𝑠 = ?

𝑑
𝑑𝑡

cos 𝜔𝑡 = −ω sin 𝜔𝑡

ℒ
𝑑
𝑑𝑡 cos 𝜔𝑡 𝜀(𝑡) =

𝑠3

𝑠3 + 𝜔3 − 𝑢 0 = −
𝜔3

𝑠3 + 𝜔3

−𝜔 ℒ{sin 𝜔𝑡 𝜀 𝑡 } = −
𝜔3

𝑠3 + 𝜔3 ℒ{sin 𝜔𝑡 𝜀(𝑡)} =
𝜔

𝑠3 + 𝜔3



Example 5: Inverse Projection
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If                                     then find f (t).	

and



Laplace Transform of Convolution
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• Assume that f (t)	=	g (t)	=	0	for t <	0

𝐻 𝑠 = ℒ *
"

&

𝑓 𝜏 𝑔(𝑡 − 𝜏) 𝑑𝜏 = ℒ *
"

#

𝑓 𝜏 𝑔(𝑡 − 𝜏)𝜀(𝑡 − 𝜏) 𝑑𝜏

= *
"

#

𝑒$%& *
"

#

𝑓 𝜏 𝑔(𝑡 − 𝜏)𝜀(𝑡 − 𝜏) 𝑑𝜏 𝑑𝑡 = *
"

#

𝑓 𝜏 𝑑𝜏*
"

#

𝑔(𝑡 − 𝜏)𝜀(𝑡 − 𝜏)𝑒$%& 𝑑𝑡

𝐻(𝑠) = *
"

#

𝑓 𝜏 𝑒$%4𝑑𝜏*
"

#

𝑔(𝜆)𝑒$%8 𝑑𝜆 = 𝐹 𝑠 𝐺(𝑠)𝜆 = 𝑡 − 𝜏
substitute



Transfer Function
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The output, y(t), of an LTI system with the impulse response g(t) for an input 
signal, u(t), is given by:

In the Laplace domain, the relation is given by 

The Laplace Transform of the impulse response is called Transfer Function



Transfer Function
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Input-Output Representation with Transfer Function

Mathematical description of LTI Systems
• Linear State Model: n first order linear differential equations
• Input-output Model: A linear differential equation of order n

State-Space Representation vs Transfer Function
• The dependence on the input signal
• Real vs Complex Variables



Input-Output Model
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Linear, time-invariant system

The transfer function is given by:

Forced response Free response



Input-Output Model
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Linear, time-invariant system that is initially at rest

The transfer function is given by:

causality

• Poles are the roots of the denominator polynomial 
• Zeros are the roots of the numerator polynomial
• Order of the system: degree of denominator polynomial



Example 1

30

Forced 
response

Free 
response

Reminder:



Example 2
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Forced 
response

Find



Example
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Initially at rest



Example
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Linear State Model
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Linear, time invariant system

Laplace Transform



Linear State Model
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Linear, time invariant system that is initially at rest

Transfer Matrix



Example
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𝐺 𝑠 = [1 0] 𝑠 −𝑎
𝑎 𝑠

$2 0
1 = [1 0]

𝑠
𝑠3 + 𝑎3

𝑎
𝑠3 + 𝑎3

−𝑎
𝑠3 + 𝑎3

𝑠
𝑠3 + 𝑎3

0
1 =

𝑎
𝑠3 + 𝑎3

𝑎 𝑏
𝑐 𝑑

$2
=

1
𝑎𝑑 − 𝑏𝑐

𝑑 −𝑏
−𝑐 𝑎



Example
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